

Intro / project location

Red = GSV fault lines, purple = mapped reefs to date, tan = cover

Timeline / Historic Mining and Ownership

Historic mining

Wallman Family

Leetech

1993-2005

Mining Licence Lapses

1864+

1864-1882, 1083t @10.4g/t for 363oz 1864-1812 prospectors, Barns

and Party; Copeland, Bosanquet and Co.

1868- Fiddlers Creek Company.

1870- Mr T Clapperton

1872-Perydale Gold and Silver

Lead Mining Company.

1970-1992

1970 to 1992 1993 to 2005 Leetech 3538 ton @

> 3.2 g/t for 113 oz in concentrate

2005

2005 Fiddlers Creek GMC 2006 GBM Gold. 2015

Prospecting licence application

Dewater **Diamond Drilling** Channel

sampling

2017

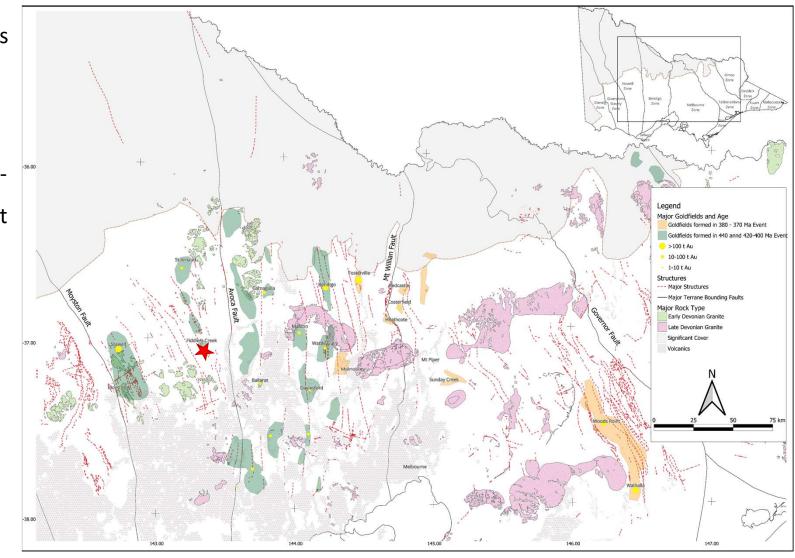
Mining workplan approved

2021

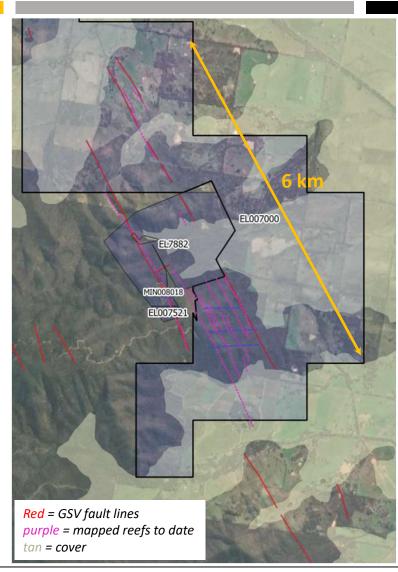
Decline started

2022

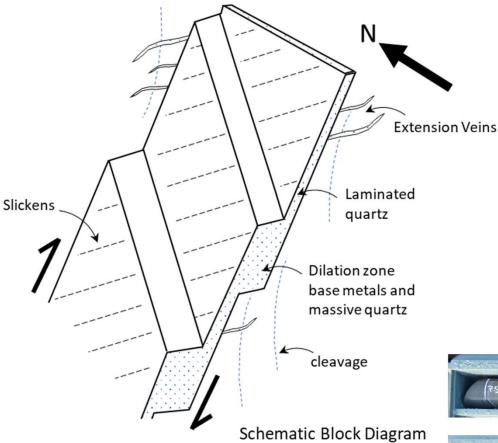
Convert **Prospecting** licence to a Mining Licence under section 26AAAof the **MRSDA**



Regional Geology


- The Fiddlers Creek area is within the Stawell zone on the eastern margin
- 1-kilometre-wide and 65-kilometre-long lineament extending from
 Amphitheatre to St
 Arnaud

Regional Geology


- The Fiddlers Creek area is within the Stawell zone on the eastern margin
- 1-kilometre-wide and 65-kilometre-long lineament extending from
 Amphitheatre to St
 Arnaud

- 6 main mineralised trends present on the project currently identified
- >600 historical workings identified from LIDAR and mapping
- >6km of structure identified on several line with continuity through cover – cover has never been drilltested below

Local Geology

- Reverse fault, related quartz / gold emplacement within the west dipping shale, siltstone and sandstone sequences typical of Central Victorian gold mineralization.
- Sheared out antiforms and synforms are interpreted to be present, as younging is readily apparent and reversals are often observed across the project area with no change to bedding orientation
- Highly strained zone very strong secondary cleavage
- Prolific carbonate porphyroblasts
- Flat intrusive sills porphyritic intermediates in character
- Regular cross cutting faults of northwest southeast orientations with an apparent sinistral offset that have compartmentalised and offset mineralised structures

Geochron / Petrography / Research

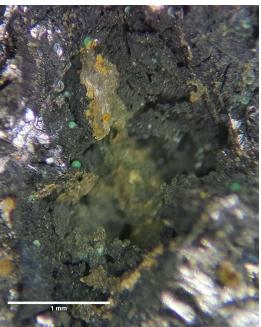
- Previous age dating has constrained the youngest age possible by the interaction with a pophyritic andesite dyke cutting across mineralisation
- Masters project looking at the geochemistry and alteration of the carbonate porhpyroblasts and sulphides
 - Determine the source of gold and base metals
 - Establish the ore forming processes
 - Date the carbonate alteration that predates the reverse faulting and quartz reef development

Gold undercover report 6 - Geochron pg 2
--

Sample ID	Location (goldfield/deposit)	Material dated	Dating Method	Age (Ma±2SD)	References	
FR-01	Fiddlers Reef	slate from within laminated reef	40Ar/39Ar	413±3	Bierlein et al. (1999a, 2001a)	
FRD-1/62.1m	Fiddlers Reef	slate adjacent to small vein in hanging wall of main reef	40Ar/39Ar	412±3	Bierlein et al. (1999a, 2001a)	
FR-H09	Fiddlers Reef	hangingwall psammopelite	40Ar/39Ar	430 to 440	Bierlein et al. (1999a, 2001a)	
FC96-03	Fiddlers Reef	porphyritic dyke	40Ar/39Ar	397±3	Bierlein et al. (1999a, 2001a)	
FC96-04	Fiddlers Reef	porphyritic dyke	40Ar/39Ar	407±3	Bierlein et al. (1999a, 2001a)	
FC96-05	Fiddlers Reef	porphyritic dyke	40Ar/39Ar	400±4	Bierlein et al. (1999a, 2001a)	

Bierlein, F.P., Arne, D.C., Reynolds, P. & McNaughton, N.J., 1999a. AMIRA P478: Victorian Gold – Timing Relationships and Emplacement. Final Report on Geochronology (Confidential), 1–126.

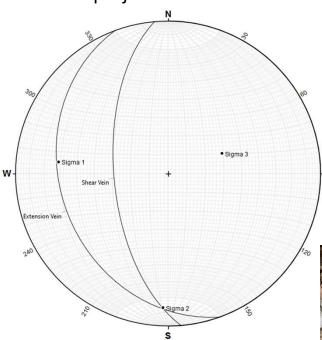
BIERLEIN, F.P., ARNE, D.C., FOSTER, D.A. & REYNOLDS, P., 2001a. A geochronological framework for orogenic gold mineralisation in central Victoria, Australia. Mineralium Deposita 36, 741-767.



Mineralisation Style

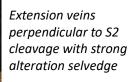
- Percydale gold occurrences are atypical within Central Victoria due to the higher content of sulfides.
- High percentages of galena, sphalerite, chalcopyrite and abundant pyrite occur within silver and gold hosting reefs of the area.
- Secondary minerals are common in Fiddlers Creek
- Sphalerite is often replaced with Smithsonite
- Small botryoidal Azurite and Malachite clumps are seen replacing chalcopyrite in voids on the margins of the quartz veins.

Above: 2 level; Fiddlers Reef gold, galena, sphalerite & pyrite in quartz


Left: Galena (silver), smithsonite (black), Pyrite, Chalcopyrite

The importance of field mapping

Intersection of the shear vein and extension vein (when not completely rotated) gives a systematic ~15-22 plunge to the south


consistent with the boudinage direction in mineralised veins across the project

workings along strike of the pit & workings

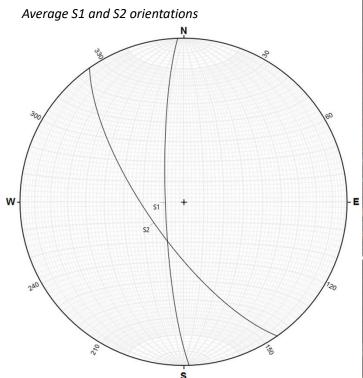
Chip samples at Historic Bannister/Poverty Open Pit

SampleID	Au ppm	Width (m)
CP0182	5.25	1.2
CP0183	1.72	0.5
CP0184	2.02	1.2
CP0185	19.4	0.4
CP0186	59.6	0.05

Poverty Pit, Looking South

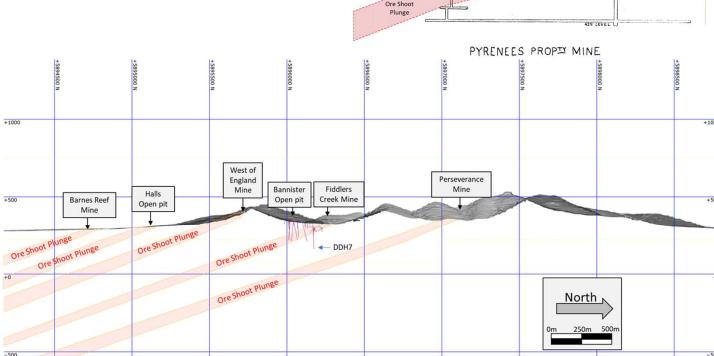
Visible Au found in historic Bannister/Poverty historic open

Average EVN and Shear vein orientations


Structural Controls

Highly complex strain environ, strong cleavage S1+ overprinted by S2+ creating a strong crenulation cleavage

Some internal geometries of the base metals are folded creating a steep internal plunge to the already shallowly plunging quartz echelon shape of the shear vein that coincides with the intersection of the S1 and S2 cleavage



Exploration Potential

- The Fiddlers Creek reef is currently open at depth and along strike
- Deepest hole on tenement DDH7 at 179.8m deep
- Ore plunges were poorly understood in historic days
- Numerous old workings and private operations exist in the area and along strike.

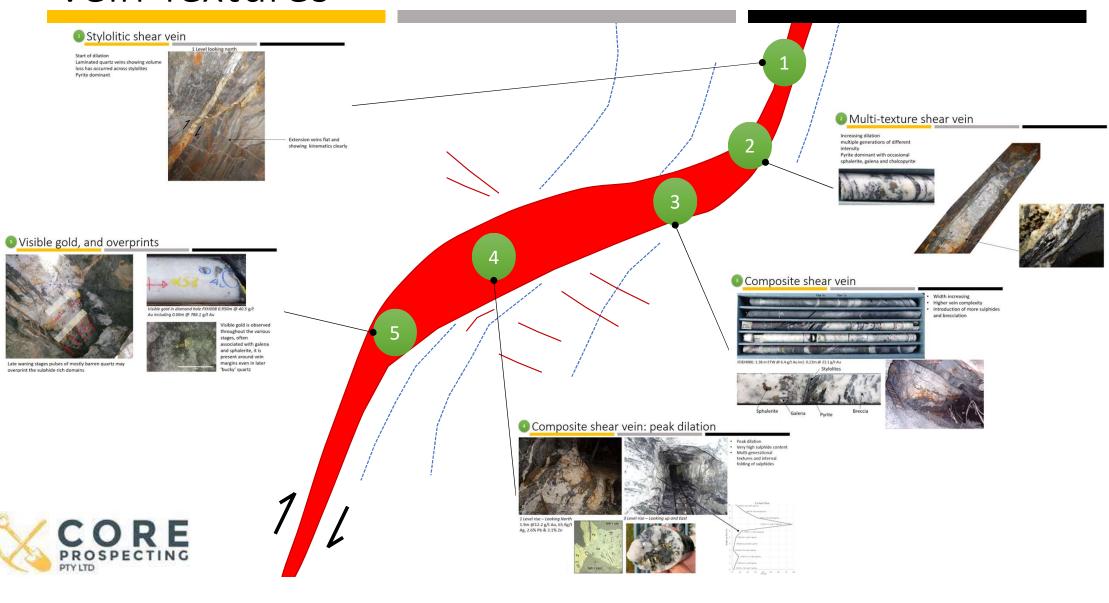
High grade mines:

- Pyrenees Mine, Redbank: produced 1586 oz Au from 1683.59 tonnes of ore (Average grade = 29.3 g/t Au)
- Tormeys: produced 520 oz Au from 409.46 tonnes of ore (Average grade = 39.5 g/t Au)
- Barnes Reef: produced 1330.4 oz Au from 1405.5 tonnes of ore (Average grade = 29.4 g/t Au)

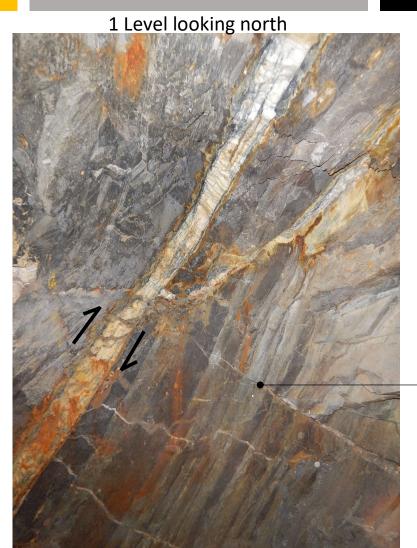
Average dip / dip direction 58 -> 251

PROJECTION

129.5m


VERTICAL

LONGITUDINAL


Longsection displaying major historic mines and ore shoot geometries based on structural and kinematic mapping. Historic drilling is displayed in purple

Vein Textures

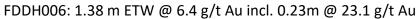
Stylolitic shear vein

Start of dilation Laminated quartz veins showing volume loss has occurred across stylolites Pyrite dominant

Extension veins flat and showing kinematics clearly

Multi-texture shear vein

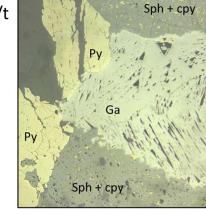
Increasing dilation
multiple generations of different
intensity
Pyrite dominant with occasional
sphalerite, galena and chalcopyrite



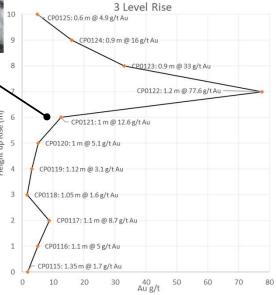
Composite shear vein

Pyrite

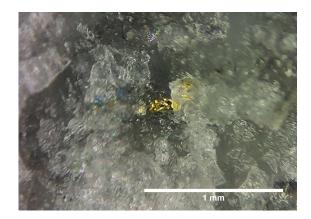
- Width increasing
- Higher vein complexity
- Introduction of more sulphides and brecciation


Composite shear vein: peak dilation

1 Level rise – Looking North 1.9m @12.2 g/t Au, 65.9g/t Ag, 2.6% Pb & 3.1% Zn


3 Level rise – Looking up and East

- Very high sulphide content
- Multi-generational textures and internal folding of sulphides

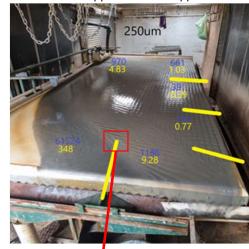

Visible gold, and overprints

Late waning stages pulses of mostly barren quartz may overprint the sulphide rich domains

Visible gold in diamond hole FKH008 0.950m @ 40.5 g/t Au including 0.06m @ 786.1 g/t Au

Visible gold is observed throughout the various stages, often associated with galena and sphalerite, it is present around vein margins even in later 'bucky' quartz

Size of the prize



- Each dilatant zone is expected to be ~5000-10,000 ounces Au in size,
- Historic mines often stopped at the water table due to high sulphide content and associated poor recoveries by mercury
- Our Goal
 - To replace LOM every year & add significant mineable resources to inventory.
 - Short term goal (1-3.5 years) is to have 50,000 ounces Au in inventory, with long term goal (3-10 years) to expand this to 100,000 ounces Au.

Mass	Element concentration				Tonnes					
Tonnes	Au	Ag	Cu	Pb	Zn	Au	Ag	Cu	Pb	Zn
t	ppm	ppm	ppm	pct	pct	t. oz	t. oz	t	t	t
19,065	7.6	5.1	474	0.7	0.6	4,675	3,130	9.0	137.6	122.1

Cut-off: Au \geq 3.5 ppm, Differences may occur in totals due to rounding.

Where to next?

- Full Mining License approval
 - In application currently
- Finalise Toll milling approvals of our Processing facility in Wedderburn
 - EPA and ERR endorsements received, council planning application pending
- Mine it!
 - Mining workplan already approved and carrying over from prospecting licence
- Find another, or two!
 - Fully permitted to explore on exploration tenure surrounding

Key Takeaways

Tenement admin / processes

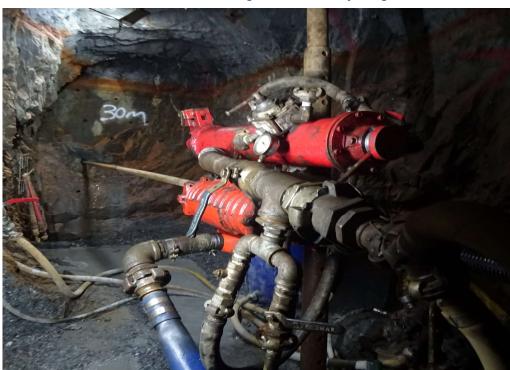
- Make sure you tick all the boxes
- Being too technical and exact can be a downfall sometimes generalisations will lead to quicker and better outcomes with less back and forth
- Assume the department does not know a single mining or exploration term, glossary of definitions will save time!
- Asking questions and organise meetings to talk through options is a key
- Plenty of people that know their way through the approvals process use them!

Geology

- Boots on the ground can save a lot of \$\$\$
- Agile exploration strategy. Rapidly assess projects and have multiple options if a re-assessment is required.
- Knowledge geology skills of structural geology and geochemistry with experience in some of Victoria's highest-grade deposits.
- Multilayered approach, not just 1 signature to define anomalism, best to have a minimum 2-3 variables suggesting economic levels of mineralization are present.
- Not over-committing resources and missing important signals to economic viability. I.e. too many drill rigs just to meet budget or metres. Plan for time to evaluate and interpret.

Acknowledgements

Thanks


- Toby Houldsworth
- Chris Toifl
- Dave Rhys –
 Structural consultation, photos and guidance
- James Long, Prof
 Reid Keays, Barrie
 Bolton –
 Photomicrographs,
 isotope work and
 research work

1 Level Rise – facing south, Kenny for scale

Questions?
Kenneth.h.bush@gmail.com

Fiddlers Creek Mine diamond drilling 3 Level x-cut: facing west

References

References

- James. Long Master thesis 2023 unpublished Melbourne University
- Fu, B., Fairmaid, A.M. & Pillips, D., 2007. Geochronology of gold deposits in the western Lachlan Fold Belt, Victoria: A review. GeoScience Victoria Gold Undercover Report 6. Department of Primary Industries.

